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INTRODUCTION

Protein Data Bank (PDB)1 offers to date more than

43,000 protein structures in the public domain. This data

encloses wealth of information, which plays a critical role in

our understanding of protein function, its evolution and

sequence to structure relationship that further unfolds

improved solutions to structure prediction and validation.

Mining of information from this huge amount of data plays

a crucial role, and most of the time, the information

includes the measure of structural similarities between two

or more proteins. Steady increase in number of known pro-

teins has made it impossible for manual inspection of each

and every protein present in PDB with rare exception of

SCOP2 database based on manual classification of protein

domains. To overcome this limitation, many groups have

developed various structure comparison methods.3,4

Structure comparison between two proteins has been of

major interest from the time when Perutz5 used structure

alignment to highlight structural similarities between myoglo-

bin and hemoglobin despite sharing low sequence similarities.

Common functionality between these two proteins is not acci-

dental; evolutionary relationship and shared structural features

are the reasons that describe the above phenomena. Structure

comparison methods are aimed to find these structural similar-

ities to foresee protein’s function, especially at low sequence
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ABSTRACT

We present a comprehensive evaluation of a new structure

mining method called PB-ALIGN. It is based on the encod-

ing of protein structure as 1D sequence of a combination

of 16 short structural motifs or protein blocks (PBs). PBs

are short motifs capable of representing most of the local

structural features of a protein backbone. Using derived

PB substitution matrix and simple dynamic programming

algorithm, PB sequences are aligned the same way amino

acid sequences to yield structure alignment. PBs are short

motifs capable of representing most of the local structural

features of a protein backbone. Alignment of these local

features as sequence of symbols enables fast detection of

structural similarities between two proteins. Ability of the

method to characterize and align regions beyond regular

secondary structures, for example, N and C caps of helix

and loops connecting regular structures, puts it a step

ahead of existing methods, which strongly rely on second-

ary structure elements. PB-ALIGN achieved efficiency of

85% in extracting true fold from a large database of 7259

SCOP domains and was successful in 82% cases to identify

true super-family members. On comparison to 13 existing

structure comparison/mining methods, PB-ALIGN emerged

as the best on general ability test dataset and was at par

with methods like YAKUSA and CE on nontrivial test

dataset. Furthermore, the proposed method performed well

when compared to flexible structure alignment method like

FATCAT and outperforms in processing speed (less than 45

s per database scan). This work also establishes a reliable

cut-off value for the demarcation of similar folds. It finally

shows that global alignment scores of unrelated structures

using PBs follow an extreme value distribution. PB-ALIGN

is freely available on web server called Protein Block

Expert (PBE) at http://bioinformatics.univ-reunion.fr/PBE/.
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similarity, to study evolutionary relationship and basic

understanding of protein-folding problem.

Furthermore, comparison and alignment help in organi-

zation and classification of known proteins,6,7 mining of

similar known proteins for newly solved structure,8–11

identification of functionally important sequence pattern in

homologous proteins,12,13 and they also provide point of

reference for sequence alignment methods.14–16 Structure

comparison and alignment is a more challenging and com-

plicated problem due to a number of reasons. First problem

is about what to compare? Once this decision is made, it is

very difficult to obtain optimal alignment or identify

among many alignments, as there are number of ways to

align two structures. Also, in presence of high structural

similarity, it is challenging to make out if it arises from evo-

lutionary constraint or is just an analogy due to physical

constraint on fold space.

There are various methods for structure comparison

based on what level the structure is represented; some

methods use all atom model, but are limited to small

substructures17; more common approach involves back-

bone comparison of two proteins based on backbone

atoms, for example, Ca atom or internal distance matri-

ces9,18,19 or internal angles10,20,21 estimated from

backbone atoms. Alignment of structures based on initial

alignment of secondary structure elements (SSEs) and

further refinement through iteration is also a commonly

used approach.11,22,23 Graph theory-based SSE align-

ments provide another alternative solution for structure

comparison.24,25 Methods using backbone coordinates

for structure comparison relies on root mean square

deviation measure between two proteins, and objective

function has to minimize this value to identify structural

similarities. Such methods26–28 are useful for comparing

two proteins or substructures, but they are computation-

ally expensive, making them too slow for mining of simi-

lar structures from large database. Recently developed

methods like FlexProt29 and FATCAT30 use flexible

structure alignment approach by introducing twists

between aligned fragment pairs to improve overall super-

position and try to overcome the limitations of rigid

body structure alignment techniques.

Popular methods like DALI,9 SSAP,19 and CE18 use

reduced representation of protein backbone in terms of

distance matrices. DALI uses hexapeptide distance matri-

ces combined with dynamic programming and Monte

Carlo optimization technique to obtain global alignment

(GA). The combinatorial extension (CE) method com-

bines aligned short structural fragments into larger align-

ment paths and apply dynamic programming to generate

GA. Both these methods are most commonly used for

structure comparison and fast structure mining, though

sometimes absence of homolog in database can increase

search time considerably.

Most of these methods perform structure alignment

based on SSEs or use them to obtain initial starting

point. Protein structures can also be approximately

described using structural alphabets (SAs), which are

recurring short structural motifs found across protein 3D

space (for a review, see Offmann et al.31). Many groups

have identified these recurring short motifs capable of

describing protein backbone32–34 and are believed to be

more informative in protein structure analysis.35

Use of SAs for structure comparison has been

attempted only in the last decade. 3D-Blast is an example

of one such recently developed approach, which uses a

23-state SA to describe the backbone.36 This method

uses BLAST as a search method using a SA substitution

matrix to find the longest common substructures with

high-scoring segment pairs. It uses the E-value of BLAST

as measure of statistical significance of an alignment and

generates results with performance comparable to known

methods.

Using a set of 16 pentapeptide structural motifs known

as protein blocks (PBs),37,38 we have introduced a new

methodology of analyzing protein structures.39 Each of

these 16 motifs is represented by character alphabets (a,

b, c,. . ., p) and are described by vector of eight dihedral

angles (/, w) making it possible to represent 3D protein

structure by a string of 1D sequence of PBs. Taking

advantage of this reduced representation of protein struc-

ture as mere sequence of symbols, we recently derived a

PB substitution matrix and investigated its potential util-

ity in protein structure analysis31,39 or for discovering

functional local structural motifs.40

A new structure comparison method (PB-ALIGN) use-

ful for mining protein structural databases has been

developed. This approach is based on PB sequence align-

ment using the newly derived PB substitution matrix,

which has been developed.39 The basic premise of struc-

ture alignment is very simple and is based on encoding

of protein backbone by a sequence of characters repre-

senting PBs. Further, these PB sequences are aligned just

like amino acid sequences using dynamic programming

combined with a substitution matrix. Capability of PBs

to represent local structure variations and alignment of

these PBs provides more intuitive knowledge of structur-

ally similar regions in two proteins when compared to

SSE representation. Structure alignment based on PB

sequence is not only able to align regular substructures

but also the N and C cap regions. It also highlights struc-

tural variations in loops that connect regular secondary

structures. PB sequence alignment to obtain structure

alignment is a very fast procedure of structure mining

and allows large database mining in real time.41

In the present study, we provide a comprehensive

evaluation of the methodology compared to existing

techniques. We also provide more thorough analysis of

the efficiency rate of mining proteins from a large data-

base, using PBE server. In addition, we present optimal

gap penalty for both local42 and global43 alignment

techniques. Our results show that PB-ALIGN provides
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equivalent or better efficiency rate in mining of struc-

tures from large database when compared to methods

like DALI,9 CE,18 and FATCAT30 and is much faster in

all of them. Our method achieved 89% success rate in

extracting true fold from pairwise alignment of 7259

against 7259 SCOP domains. In non-trivial cases, PB-

ALIGN provides comparable results to more robust and

complex methods and also gave satisfactory results while

handling multidomain protein. We addressed the ques-

tion of alignment score threshold for making decision

that two aligned structures correspond to same fold. The

statistical characteristics of the distribution of GA scores

were finally examined.

MATERIALS AND METHODS

Dataset used for evaluation of PB-ALIGN

In the present study, we have used batteries of test

dataset to assess the performance PB-ALIGN in different

experimental conditions. Database of 7259 SCOP (v1.65)

domains filtered at 95% identity implemented in PBE

web server8 are used for assessing the mining efficiency

of the method. Distribution of seven SCOP classes is as

follows: 1337 (18.5%) a domains, 2077 (28.6%) b domains,

1387 (19.0%) ab domains, 1529 (21.0%) a 1 b domains,

700 (9.6%) small domains, 89 (1.2%) multidomains, and

140 (1.9%) membrane domains. PB-ALIGN was com-

pared with 13 existing structure mining/comparison

methods based on three different datasets. The general

ability of the methods to extract similar structure pro-

teins was tested on 61 query proteins belonging to ten

protein families, representing the four CATH main classes

(mainly a, mainly b, mixed ab, and few secondary struc-

tures). Same dataset was used in two independent studies

done by Novotny et al.3 and Carpentier et al.10 Ability of

the methods to handle multidomain proteins was eval-

uated based on two multidomain queries selected by

same groups. Fourteen nontrivial query-target pairs were

taken from study done by Carpentier et al.10 to test the

robustness of the method in detecting difficult structural

similarities. Furthermore, we performed comparison of

PB-ALIGN with flexible structure alignment program

FATCAT, based on pairwise alignment of 10 difficult pairs

as used by Ye et al.30

Encoding 3D structures into PB sequence

Local backbone features of a protein can be repre-

sented by 16 prototypes of five-residue long motifs called

PBs.38 Each PB is characterized by vector of eight dihe-

dral (/, w) angles associated with five consecutive Ca
atoms, and the 16 PBs are denoted by a character set

varying from a to p. Encoding of protein backbone into

PB sequence is a two-step process: (i) coordinates of

backbone atoms are used to calculate sequence of (/, w)

angles; (ii) an overlapping window of eight (/, w) angles
(corresponding to five Ca residues) is moved along the

backbone. PBs for each window is assigned on the basis

of smallest dissimilarity measure called root mean square

deviation on angular values or rmsda44 calculated

between observed (/, w) values in the window and the

standard dihedral angles for various PBs. By following

the above simple procedure, a 3D structure of a protein

can be encoded into a 1D sequence of PBs representing

local structural information as sequence of SAs.

PB substitution matrix

A 16 3 16 PB substitution matrix has been recently

derived by our group.45 The substitution scores between

PBs were evaluated by counting the number of substitu-

tions occurring in conserved regions of structurally

aligned homologous proteins. These proteins are selected

from large database, PALI,46,47 containing structure-

based pairwise and multiple alignments of homologous

proteins of known three-dimensional structures. The data-

base uses a rigid-body superposition program, STAMP,48

to generate structure-based alignments. In total, 21,503

pairwise alignments from 1197 SCOP families were

analyzed, which accounted for more than 2,000,000 PB

substitutions. The raw frequencies are normalized and

expressed as the log-odds score. The obtained scores pro-

vide extent of preference of a PB in a protein for its reten-

tion or substitution and allow evaluating equivalence

between homologous structures. The matrix has been

validated in our previous studies and has been shown to

be useful in identification of structurally equivalent

regions in two proteins. In addition, the matrix has

potential applications in differentiating between confor-

mational differences and rigid body shifts among homol-

ogous protein structures.45

Gap penalty optimization

In our previous study, we selected an arbitrary gap

penalty of 20.5 on manual inspection of PB alignments.

Here, we follow extensive procedure to suggest optimal

gap penalties. Penalty optimization procedure is based on

two criteria: effect of gap penalty on overall mining effi-

ciency of similar structure proteins and quality of align-

ments generated. Structure mining efficiency is measured

by counting number of times a true hit at class, fold,

super-family, and family level is obtained when Top 10,

5, and first ranking alignments are considered for a given

query. Quality of alignment is measured in terms of

rmsd value obtained from superimposition of protein

pairs based on PB alignment. Superimposition is per-

formed using ProFit49 software, where equivalent zones

are specified by PB alignment.

We performed a comprehensive study to suggest opti-

mal gap penalty for both local alignment (LA) and GA

M. Tyagi et al.
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algorithms using 2000 randomly sampled domains. A

database of 2000 3 2000 pairwise PB alignments was

generated to perform above two analyses. Attention was

given to keep the relative proportion of seven major

classes similar to that in original databank. Jackknife

approach was used to measure mining efficiency, and

alignment quality measure was done by considering only

pairs belonging to same family. For GA of PB sequences,

we used following set of gap penalties 20.5, 22.0, 22.5,

23.0, and 25.0, and optimal gap penalty for LA algo-

rithm was selected from the following set of penalties

20.5, 22.0, 23.0, 25.0, and 27.0.

RESULTS AND DISCUSSION

Effect of gap penalty on mining similar
protein structures

Using 2000 randomly sampled domains, we assessed

efficiency of both local and GA techniques to extract

structurally similar proteins at class, fold, super-family,

and family levels for a given gap penalty. For a given

query, hits are calculated by considering Top 10, 5, and

first ranking alignments. In the following analysis, we

present results from Top 10 ranking alignments.

Table I reports efficiency rate for mining proteins at

class, fold, super-family, and family level considering Top

10 ranking alignments based on GA algorithm. Bold val-

ues indicate best efficiency rate achieved at each level.

With varying gap penalty from 20.5 to 23.0, negligible

effects on efficiency of extraction of proteins was

detected. Not more than 0.6% of change was seen in effi-

ciency rate in this range of gap penalties. Further increase

reduces the efficiency of the method by almost 3% as

illustrated from low success rate achieved at a penalty of

25.0. Among penalties used in this analysis, gap penalty

of 22.0 seems to give the best results, though perform-

ance was not very much higher for other penalties used.

Table II shows the success rate of mining similar pro-

teins using LA at class, fold, super-family, and family

level when Top 10 ranking alignments are taken into

account. Because of the basic nature of the algorithm, it

was suspected that the higher gap penalty will yield bet-

ter results and efficiency rate can be inferior to GA.

Indeed the two assumptions are true from the above

tables. Efficiency rate has increased by almost 10% at

fold level by changing penalty from 20.5 to 22.0, but

overall success rate is slightly lower when compared to

GA results. One of the reasons for low efficiency com-

pared to GA can be due to the dataset used in our analy-

sis. Since we have taken well-defined domains as query

against well-defined domain database, GA has an advant-

age here due to the basic nature of the algorithm. This

advantage can be a limiting factor for GA in case we use

complete protein chains as query without any knowledge

of domain boundary. Indeed this is further documented

in the following sections where LA outperforms in real

case scenario and is able to extract true domains with

high scores from the database, whereas GA fails due to

more number of gaps introduced in the alignment. On

varying penalty from 22.0 to 27.0, the variation on effi-

ciency rate is very moderate, though best results are

obtained at 23.0 or 25.0 gap penalty.

Similar efficiency rates achieved by neighboring gap

penalties, both in local and GA techniques indicate varia-

tion in gap penalty increases or decreases success rate

only to certain extent. No clear favorable gap penalty can

hence be considered as optimal. From manual inspection

of alignments obtained from various penalties indicated

even though mining rate is somewhat constant, gap pen-

alty can have more impact on quality of alignment pro-

duced. Based on this assumption, we further studied the

relationship between gap penalty and quality of align-

ment in the following section.

Effect of gap penalty on structural
alignment quality

In this analysis, we performed a very simple exercise

whereby, for each gap penalty, we generated both local

and GAs between pairs of homologous structures belong-

ing to the same family. To assess the quality of PB-based

alignments, we used rmsd values from the superim-

position of aligned residues. Each PB alignment was

Table I
Optimization of Global Gap Penalty

Level/gap penalty

20.5 21.0 22.0 22.5 23.0 25.0

Class 98.1 97.9 97.9 97.95 98.05 97.9
Fold 66.35 66.55 66.9 66.5 66.25 63.85
Super-family 61.5 61.65 61.65 61.35 61.05 58.7
Family 55.5 55.95 56.6 56.6 56.2 54.45

Effect of gap penalty on mining rate at class, fold, super-family, and family level

for global alignment. The results are from top 10 ranking alignments. Analysis

was performed on 2000 randomly selected SCOP domains.

Table II
Optimization of Local Gap Penalty

Level/gap penalty

20.5 22.0 23.0 25.0 27.0

Class 89.9 93.3 93.9 94.2 94.25
Fold 50.55 60.55 62.9 62.75 61.35
Super-family 49.15 58.15 60 60 59.05
Family 44.45 52.95 54.1 53.95 52.8

Effect of penalty on mining rate at class, fold, super-family, and family level.

Results are from top 10 ranking alignments. Analysis was performed on 2000 ran-

domly selected SCOP domains.
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converted into corresponding amino acid (AA) alignment

and was presented to ProFit software, which further per-

formed least square fit of backbones based on AA align-

ment. List of rmsd values for every pair was complied at

different gap penalties. For comparison of overall effect

of gap penalty on rmsd values, we plotted the average

improvement in rmsd values on different gap penalties

with respect to rmsd values obtained at penalty of 20.5.

Basically, we have tried to highlight the change (decrease)

in rmsd values of various pairs at different gap penalties

when compared to values obtained at gap penalty of

20.5. Figure 1(a) shows the increase in improvement of

average rmsd values at different gap penalties (22.0,

22.5, 23.0, and 25.0) for GA algorithm. From the

above figure, it is very clear that increase in negative gap

penalty has shifted more number of pairs toward lower

rmsd values. For example, on varying gap penalty from

20.5 to 23.0, almost 18% of alignment pairs have lower

rmsd values in interval of 0.5 to 1 Å, and gap penalty of

23.0 and 25.0 has brought improvement of 1 Å or

more to almost 44 and 47% homologous pairs, respec-

tively (data not shown). Figure 1(b) shows similar

improvement in LA quality by varying gap penalty from

20.5 to 27.0. Once again overall improvement in rmsd

values is seen at various gap penalties. Most fruitful pen-

alties were 25.0 and 27.0, where average improvement

of more than 2 Å is observed.

Based on efficiency of mining similar proteins and

improvement in quality of alignment at various penalties

level, it was found that 23.0 and 25.0 were optimal gap

penalties for global and LA algorithm, respectively. For

GA, penalty of 22.0 yielded best results for extraction of

similar proteins, but gap penalty of 23.0 was optimal

value in terms of overall alignment quality and mining

rate. In case of LA algorithm, even though gap penalty of

27.0 was able to give better rmsd values, the extraction

rate was inferior to the penalty of 25.0 by almost 1%,

and hence 25.0 was chosen as optimal penalty having

balanced results for both alignment quality and mining

of proteins.

Mining of protein structures

Efficiency of PB-ALIGN method to extract structurally

similar proteins at different SCOP classification level was

tested in the following study. We have analyzed 7251

domains selected from SCOP data bank filtered at 95%

identity and performed all-against-all pairwise GA of PB

sequences with an optimized gap penalty of 23.0. A class

confusion matrix has been generated from 7259 3 7259

pairwise alignments to assess discriminatory power of

simple PB alignments to assign correct SCOP class. The

method was evaluated by counting if the true class, fold,

super-family, or family member is present within Top 10

hits, ranked by normalized score. It is noteworthy that

performance of PB-ALIGN was evaluated in a jack-knife/

leave-out approach, where each query domain was

removed from database prior to testing. This corresponds

Figure 1
Effect of gap penalty on (a) global alignment and (b) local alignment. Figure gives the mean improvement (decrease) in rmsd value (Y axis) at different negative gap

penalties (X axis) with respect to rmsd values at a gap penalty of 20.5. As shown, with increase in negative penalty, there is an improvement in superimposed rmsd

values compared to values obtained at a penalty of 20.5. In case of local alignment (b), there is large improvement in alignment quality as negative gap penalty is

increased. Even though 27.0 gives better mean improvement in rmsd, 25.0 was chosen as the desired penalty as a balance between alignment quality and mining

efficiency.
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to real-life situations when one will have to query struc-

tural databases for mining similar folds. It is also this

standard that is largely used for evaluation performance

of structure mining methods.3,4,9,10,50 However, so as

to evaluate efficiency of PB-ALIGN to assign high classi-

fication levels and capture remote homology, we also

evaluated the situation where members from same family

as query were removed. So the dataset size used in all

cases dynamically changed depending upon the query

protein.

Table III summarizes the results obtained for each

level, mainly class, fold, super-family, and family at three

different ranks, 1st, 5th, and 10th. True class of a query

protein can be found with an efficiency rate ranging

between 92.5% and 99.1% when first 10 ranked align-

ments were considered. Possibility of finding true fold

among Top 10 hits showed distinct performance with a

hit rate of 62.6% when whole family is jack-knifed and

87.4% when only query is left-out and similar perform-

ance were observed at super-family level. Taking into

account only the first hit (Top 1 column in Table III), we

found between 76.1% and 93.1% success in finding true

class. Among these first ranked hits, about 81.3% was

from same fold when only query was jack-knifed but of

47.4% when whole family was removed. Similar perform-

ance was obtained at super-family level (53%–79%).

Finally, on average, one is able to find true family of pro-

tein in 80% of cases.

It is further evidenced from our results that, when

higher level is properly identified, the chance to identify

subsequent lower level is still very good. The biggest

decrease in prediction efficiency is observed between class

and fold levels. However, it is noteworthy that because

we look only at Top 10 or Top 1 for performance evalua-

tion, in some instances, for example, the query d1g73a_

from scop family a.7.4.1, the good hit is found only at

lower rank, here at 69th rank because top scores were

populated with redundant hits from homologous mem-

bers of other folds (e.g., 23 hits from a.1.1.2. family, 14

hits from a.1.1.3 family, etc.).

These overall results indicate that mining similar struc-

tures using simple PB alignment methodology is per-

forming reasonably well for identifying class and super-

family relationships despite the presence of confusion

across fold alignments. Indeed, when whole family was

left-out, structural relationship at fold level was more dif-

ficult to capture using PB-ALIGN when compared to

other structural levels. This highlights the importance of

quality of information and its coverage in the databases

used for mining structures. However, in real life situa-

tions, users of structure mining tools such as PB-ALIGN

generally expect that their structures be compared to

whole PDB or representatives from all families. Hence,

overall result presented in Table III is useful to assess

how the method is performing when a query has a coun-

terpart from the same family in the PB-ALGN database.

It also shows that the method is able to capture higher-

levels relationship (super-family or fold) to some extent

when the query has no homologs in the database. These

encouraging results demonstrate the feasibility of the

method to be useful in projects like structural genomics.

What Table III does not tell us is how much confusion

exists between SCOP classes due to reduced representa-

tion of 3D structure using PB alignment. To address this

question, a class confusion matrix was generated, using a

7259 3 7259 pairwise alignment, as shown in Table IV. It

is important to analyze this confusion because by using

1D PB representation some topological information

maybe lost and it becomes crucial for proteins sharing

similar succession of SSEs. Again both situations where

query-only or whole family related to query is removed

from the database were analyzed.

As shown in Table IV, b class was most efficient

(89.3%–96.5%) to identify itself, closely followed by a
and ab class, which have efficiency rates of 83.7%–95%

and 83.8%–95.7%, respectively. a 1 b class was found to

be confused with other classes with a 88.6% success rate

when only query was left-out and a 56.4% rate when

family was jack-knifed. Almost half of the false hits from

a 1 b are confused with ab class. Overlap between ab

Table III
Efficiency Rate of Mining Proteins at Various SCOP Classification Levels

SCOP level

Only query domain is
removed from database

Whole family related to query is
removed from database

Top 10 Top 5 Top 1 Top 10 Top 5 Top 1

Class 99.1 (7194) 96.8 (7028) 93.1 (6758) 92.5 (6716) 88 (6394) 76.1 (5529)
Fold 87.4 (6343) 85.6 (6217) 81.3 (5906) 62.6 (4548) 57.5 (4178) 47.4 (3438)
Super-family 84.3 (6122) 82.8 (6011) 79.0 (5739) 65.1 (4727) 60.8 (4412) 53.0 (3846)
Family 80.0 (5809) 78.7 (5714) 75.1 (5453) n/a n/a n/a

Results are reported for top 10, 5, and 1st ranking alignments. Two situations were distinguished; one where only the query is removed from the database and another

where the whole family was removed from the database. Values are given as percentage.

n/a: not applicable.
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and a 1 b is understandable taking into the fact that

both have successions of helical and sheet regions. Per-

formance for identifying small proteins was equivalent to

a 1 b class with rates of 65.3%–89.8%. Other two

classes have very contrasting results based on the jack-

knife procedure; when whole family is removed, proba-

bility to get true class as Top 1 hit drops from 72.8%–

78.6% to 20.2%–37.8% for membrane and multidomain

proteins. Multidomain proteins are mostly confused with

ab class while membrane proteins, as expected, are

mostly confused with a class.

Computation of class recognition matrix, for example,

confusion matrix, using large number of domains high-

lights the efficiency of PB alignment. Decent efficiency

rate is an indication that reduced complexity of 3D space

and absence of topological information in PB representa-

tion has not affected the discriminatory power of PB

alignment. This efficiency level can be attributed to com-

bination of PBs connecting similar SSEs in different top-

ologies (see below).

Efficiency rate within SCOP classes

Each class was studied separately to quantify how suc-

cess rate at fold, super-family, and family was distributed

within each class. Table V gives success rate for seven

major SCOP classes, namely a, b, ab, a 1 b, multido-

main, membrane, and small proteins, when whole family

related to the query was removed or when only the query

was jack-knifed.

Success of finding true fold among Top 10 hits was

best for b and ab class with an efficiency of 71.1%–93%

and 64.9%–92.2%, respectively, followed by membrane

(87.8%–90.7%), small (66.7%–89.4%), a 1 b (66.5%–

87.5%), and a (62.3%–86.7%) class proteins. Similar

trend was followed at super-family and at family level.

Looking at hits that ranked first, b and ab classes

achieved 53.8%–88.7% and 48.9%–87.8% of success,

respectively, in finding true fold compared to a class

where 45.2%–77.1% efficiency was reached. Presence of

long helical regions in a proteins can be one of the rea-

sons for more confusion among various folds in a class

(as illustrated in the following discussion). Interestingly,

distribution of success rates at three SCOP levels very

well indicate that true hits at fold and super-family levels

are not only populated by family members. These results

are on same line as observed in Table III. Analysis of

above results indicate that PB alignment is able to locate

structure similarities even at very low sequence similar-

ities (super-family relationships), and thus our method

can be used to detect remote homologs for a given

protein.

Closer look at the cases of failure where query protein

was not able to find its true fold, super-family, or family

within Top 10 ranks gave insight to current limitations

of structure mining. Presence of single member folds,

super-families, or families in database was most common

contributor to absence of true hit. In some instances, di-

versity within family both in terms of length and struc-

tural features makes it difficult for the GA algorithm to

extract true member. For example, ABC transporter pro-

tein from Sulfolobus solfataricus (SCOP domain d1oxsc1)

from MOP-like super-family (SCOP code b.40.6.3) is

almost 40 residues longer than rest of the members. In

this case, GA algorithm has to introduce large number of

gaps to accommodate shorter proteins from the same

family resulting in low alignment scores hence low rank.

Application of LA provides an alternative solution in this

Table IV
Class Confusion Matrix

True class vs. hit class a b ab a 1 b MultiDoma Membrane Small Total

a 1271 (95.0%) 1 12 12 0 35 6 1337
1120 (83.7%) 5 47 53 4 88 20

b 2 2005 (96.5%) 10 36 0 3 21 2077
3 1855 (89.3%) 20 120 2 18 59

ab 7 8 1328 (95.7%) 39 3 0 2 1387
31 20 1163 (83.8%) 145 20 3 5

a 1 b 34 40 77 1356 (88.6%) 4 3 15 1529
99 189 301 863 (56.4%) 22 4 50

MultiDom 3 2 11 2 70 (78.6%) 0 1 89
6 5 50 9 18 (20.2%) 0 1

Membrane 29 6 0 2 0 102 (72.8%) 1 140
64 17 0 4 0 53 (37.8%) 2

Small 23 24 3 20 0 1 629 (89.8%) 700
53 115 5 69 0 1 457 (65.3%)

Total 7259

aMultiDom corresponds to multidomain protein class.

Matrix gives the efficiency of the method to find true class at first rank and the confusion rate between SCOP classes. Results were generated from 7259 3 7259 pairwise

PB alignments. True classes are featured horizontally and predicted classes vertically. Two situations were distinguished within each class; one where only the query is

removed from the database (top line) and another where the whole family was removed from the database (bottom shadowed line).
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case and enabled to extract at least one member protein

in top hits. Human hyperplastic discs protein (SCOP do-

main d1i2ta_) from PABC (PABP) domain family (SCOP

code a.144.1.1) is another such example where LA was

able to extract true hit among top ranks and GA was

unsuccessful. Note should be taken that not in all such

cases success is achieved by LA approach. For example,

Haloarcula marismortui protein (SCOP domain d1jj2s)

from Ribosomal proteins L24p and L21e family (SCOP

code b.34.5.1) is one such example where both diversity

in structural features and protein length plays a role in

unsuccessful results. Such examples are challenging and

provide an opportunity to refine and improve our

approach.

Furthermore, PB alignment technique had some prob-

lems with the pair of proteins sharing long stretch of reg-

ular secondary structures, for example, long helices in a
proteins. In PB sequence, these regions are represented as

long stretch of PB m; alignment of such regions artifi-

cially contributes to the global score and put them in

high rank. This example is very well illustrated from

pairwise alignment of ribosomal protein L12 from Ther-

motoga maritima (SCOP domain d1dd3a1) and ROP

protein from E. coli (SCOP domain d1b6q__).

Figure 2 shows good alignment of helical regions

(sequence of PB m), major reason for having high align-

ment score. Closer look at alignment indicates presence

of extra loop in domain d1dd3a1, which is absent in

other protein. Detection of this extra loop in one protein

can hint in the difference in relative orientations of heli-

ces in two proteins even though the alignment score is

high and is evident from Figure 2. This example high-

lights that sometimes alignment score can be misleading

due to the high content of regular structures in two pro-

teins but closer look into PB alignment can give clues to

the structural differences. In such cases, disadvantage of

1D representation can be overcome by having a manual

inspection to detect local variations present in-between

regular structures.

Comparison with existing methods

Performance of PB-ALIGN has been tested against 13

structure comparison methods (Table VI). We applied

Table V
Efficiency Rate of Mining Similar Structure Proteins With in Each SCOP Class

Only query domain was
removed from database

Whole family related to query
was removed from database

Top 10 Top 5 Top 1 Top 10 Top 5 Top 1

a (1337)
Fold 86.7 (1160) 84.3 (1128) 77.1 (1031) 62.3 (833) 56.0 (749) 45.2 (604)
Super-family 83.2 (1113) 81.4 (1089) 74.4 (995) 69.8 (933) 64.4 (862) 56.6 (757)
Family 77.4 (1035) 75.0 (1002) 67.0 (922) n/a n/a n/a

b (2077)
Fold 93.0 (1931) 91.8 (1907) 88.7 (1842) 71.1 (1478) 66.3 (1378) 53.8 (1118)
Super-family 90.0 (1869) 88.8 (1844) 85.8 (1782) 70.5 (1464) 65.1 (1353) 53.3 (1108)
Family 87.2 (1812) 86.0 (1786) 83.1 (1726) n/a n/a n/a

ab (1387)
Fold 92.2 (1279) 91.2 (1265) 87.8 (1218) 64.9 (901) 58.5 (812) 48.9 (679)
Super-family 90.0 (1248) 89.0 (1234) 86.1 (1195) 63.4 (880) 57.0 (791) 48.8 (678)
Family 83.3 (1156) 82.6 (1146) 80.0 (1110) n/a n/a n/a

a 1 b (1529)
Fold 87.5 (1338) 85.7 (1310) 81.9 (1253) 66.5 (1017) 59.9 (916) 51.5 (788)
Super-family 84.3 (1290) 82.6 (1264) 79.2 (1211) 69.8 (1068) 65.0 (995) 59.7 (913)
Family 79.8 (1220) 78.3 (1198) 74.9 (1145) n/a n/a n/a

Small (700)
Fold 89.4 (626) 85.8 (601) 73.8 (517) 66.7 (467) 61.7 (432) 47.1 (330)
Super-family 84.7 (593) 80.8 (566) 70.6 (494) 61.5 (431) 58.2 (408) 49.0 (343)
Family 79.4 (556) 76.8 (538) 66.4 (465) n/a n/a n/a

MultiDom (89)
Fold 86.5 (77) 86.5 (77) 85.3 (76) 66.3 (59) 66.3 (59) 64.0 (57)
Super-family 86.5 (77) 86.5 (77) 86.5 (76) 66.3 (59) 66.3 (59) 64.0 (57)
Family 76.4 (68) 76.4 (68) 76.4 (68) n/a n/a n/a

Membrane (140)
Fold 90.7 (127) 87.8 (123) 80 (112) 87.8 (123) 85.0 (119) 67.8 (95)
Super-family 75.7 (106) 73.5 (103) 69.3 (97) 88.5 (124) 88.5 (124) 85.7 (120)
Family 73.5 (103) 71.4 (100) 67.8 (95) n/a n/a n/a

Efficiency is calculated at three different ranks top 10 hits, top 5 hits, and 1st hit. Figures within brackets show the total number of queries taken into account or num-

ber of true hits, e.g., small (700) means in total we did this exercise for 700 proteins domains. Efficiency presented is in percentage, i.e., true hits/(true hit 1 false hit).

n/a: not applicable.
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batteries of tests to PB-ALIGN to obtain a comprehensive

comparison with existing methods which included gen-

eral efficiency of the method to extract-related proteins,

ability to identify difficult structure similarities in data-

base search, performance to handle multidomain pro-

teins, and comparison with flexible structure alignment

method like FATCAT. Evaluation results of existing meth-

ods are taken from recent studies done by Novotny

et al.3 and Carpentier et al.,10 where 12 structure com-

parison methods were evaluated. Comparison with flexi-

ble structure alignment method is based on results pro-

duced by Ye et al.,30 where 10 difficult pair alignments

are compared between VAST, DALI, CE, and FATCAT.

Dataset of 61 queries to compare general ability to

extract related proteins and two multidomain protein

queries are taken from the study done by Novotny et al.

We followed same evaluation procedure as done by

Novotny et al. and Carpentier et al. with one basic differ-

ence, both the studies followed CATH6 classification for

test dataset and in our study we have used SCOP2 classi-

fication for evaluation procedure. This has been done

because PB-ALIGN uses database of SCOP domains fil-

tered at 95% identity and many times there are differen-

ces in both classification schemes. A hit is counted as

true hit if it belongs to same SCOP super-family or fam-

ily level. It should be noted that some of the methods

involved in this comparative study use significance

threshold for the scores obtained to discriminate same

fold from different folds but not all. However, our

method is not initially based on the definition of a

threshold measure and considers top hits in every mining

exercise to evaluate the relative performance of methods.

Nonetheless, measures have been developed to assess sig-

nificance of the alignments (see paragraph cut-off below

for details). Thus, we applied here similar protocols to

Novotny et al. that have used few hits to compare those

methods, which did not return the significance of hits.3

From our initial tests, we found out that by using

complete protein chain as query, that LA algorithm gives

far better results when compared to GA technique. This

is obvious from the fact that many times protein chains

are longer than actual domain boundaries and using GA

in such cases increases number of gaps in alignment pro-

cedure. To avoid above pitfalls, we have used LA for our

analysis.

Figure 2
PB alignment-based superimposition of SCOP domain d1dd3a1 (green) and

d1b6q__ (blue). PB alignment illustrates how long successions of PB m can

contribute to alignment score. Presence of extra loop in protein 1DD3 is

indicated in red color. It shows how small variation at local level can bring

change in orientation of regular structures. Structural alphabet notation was

explained by de Brevern et al.37,38

Table VI
Structure Mining/Comparison Methods Tested in the Present Study

Program URL Methodology used

CE http://cl.sdsc.edu/ce.html Inter residue distances
DALI http://www.ebi.ac.uk/dali Ca distance matrices
DEJAVU http://xray.bmc.uu.se/usf/dejavu.html SSEs comparison
FATCAT http://fatcat.ljcrf.edu/ RMSD and introduction of twists
LOCK http://brutlag.stanford.edu/lock2 RMSD minimization
MATRAS http://biunit.aist-nara.ac.jp/matras Markov transition model
PB-ALIGN http://bioinformatics.univ-reunion.fr/PBE/PBE-ALIGN.htm PBs substitution matrix and alignment
PRIDE http://hydra.icgeb.trieste.it/pride Ca distance distribution
SSM http://www.ebi.ac.uk/msd-srv/ssm SSEs vector comparison
TOPa http://bioinfol.mbfys.lu.se/top SSEs alignments
TOPS http://balabio.dcs.gla.ac.uk/tops/compare.html SSEs symbolic representation and comparison
TOPSCAN http://www.bioinf.org.uk/topscan SSE representation in topology strings, aligned through

a global dynamic alignment algorithm
VAST http://www.ncbi.nlm.nih.gov/Structure/VAST/vastsearch.html SSEs graph representation
YAKUSA http://www.rpbs.jussieu.fr/yakusa Internal coordinates matching

aWeb link unreachable.
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Using LA, we queried each protein chain against the

databank and complied results simply by counting if true

hit is found within Top 10 alignments, number of mem-

bers found in Top 10, and rank of 1st false positive.

Alignments are ranked based on score generated by LA

algorithm plus normalized and Z scores are also reported

for each hit. Out of 61 queries, we found two cases (1rlr

and 1vmo) had no super-family and family members in

our databank except themselves. In total, we tested 59

test cases for general efficiency of the method and com-

pared our results with the results reported by Carpentier

et al. (Table VII). Overall PB-ALIGN performed with a

success rate of 96.6% when Top 10 ranking alignments

are considered.

Our method performs correctly in all except two cases.

Toxin protein 1ciy (PDB id) from Bacillus thuringiensis

has three domains, namely d-Endotoxin C terminal, mid-

dle and N terminal domain. PB-ALIGN is able to extract

C terminal and N terminal domains very easily in top

hits but misses out target middle domain (SCOP code

b.77.2.1) of 1ciy from initial hits and is found only at

48th rank. Because of low rank in hits, we have counted

this hit as negative in our final results. Second protein

1gj (PDB id) from E. coli has two domains and target

domain (GreA transcript cleavage protein, C terminal do-

main, SCOP code d.26.1.1) is present as lone member of

family in our database. PB-ALIGN is not able to identify

target family (single member family) or super-family

members among top hits. Target super-family members

are obtained at 12th and 16th rank if mining is per-

formed with gap penalty of 23.0. Our assessment also

found out that for only five queries out of 59 tested, the

rank of first false positive was above the rank of true hit

and there was not a single case where first true positive

was ranked after a false hit. Moreover, time taken to

query each protein was less than a minute, making it one

of the fastest and efficient structure comparison method

among the 13 methods (see Table VII) evaluated in pres-

ent study.

Performance of PB-ALIGN on
nontrivial dataset

We further tested our method’s performance on a non-

trivial dataset used by Carpentier et al.,10 which is con-

stituted of 14 difficult cases. We queried each protein

using both LA and GA algorithm against our database

and considered first 100 alignments as well as a cut-off

score value of 20.25 for GA (see below). Results of this

exercise are comparable with previous data published by

Carpentier et al.10 On this limited dataset, PB-ALIGN

performance was found to be at par with YAKUSA and

CE and gave about 50% success rate with combined

effort of LA and GA algorithm. However, the efficiency

of PB ALIGN as a pairwise comparison tool still needs to

be assessed in an in-depth benchmark in comparison

with extensively tested, robust and standard methods

such as CE, DALI, and VAST. Nevertheless, testing of

both LA and GA approach on nontrivial dataset gave

very interesting insight of our method. LA algorithm was

able to get only four targets out of the 14 tested, whereas

GA found a total of six targets with three extra hits from

LA results and missing out one case found by LA. Table

VIII gives the summary of results obtained using both

the approaches. Application of GA not only identified

more number of difficult targets but also improved the

rank of target in two cases (Table VIII). When cut-off

value (see next section) is applied as a rule for decision,

GA is able to capture seven targets above the threshold

value. Like YAKUSA, PB-ALIGN uses local structural fea-

tures to describe and encode protein backbone, and iden-

tifying distantly related proteins can be difficult due to

the fact that such pairs share structural similarities at

global level rather than local level. Ability of PB-ALIGN

to use GA algorithm to capture such remote similarities

at global level using local descriptors (PBs) sets it apart

from methods like YAKUSA.

Test case 1crb and 1bge from mainly-a class demon-

strate this fact very clearly by analyzing GA of query

(1crb) and target (2gf) protein PB sequences as shown in

Figure 3(a). Using GA, we were able to find target for

query protein 1crb among top hits with low alignment

score. Looking at PB alignment, it becomes very obvious

why LA method was not able to capture these global

similarities. Both the proteins share four helical regions

(populated by PBs m) separated by loops and small

strands (populated by PBs c and d) and two middle heli-

cal regions are of different length. Such global similarity

Table VII
Comparison of PB-ALIGN With Existing Structure Mining/Comparison Methods

Program
Mainly
a (19)

Mainly
b (19)

Mixed
ab (15)

Few
SSEs (8)

Total
(%)

PB-ALIGN 18a 17b 14 8 96.6
YAKUSA 17 19 14 8 95
CE 17 19 13 8 93
DALI 14 19 14 8 90
MATRAS 11 19 14 8 85
VAST 12 17 15 7 84
TOP 14 18 12 7 84
DEJAVU 14 19 9 4 75
TOPSCAN 15 12 9 7 70
TOPS 2 15 14 7 62
PRIDE 14 14 7 3 62
LOCK 0 14 11 8 54
SSM 5 13 10 5 54

Comparison of PB-ALIGN with 12 structure mining/comparison methods based

on results from Carpentier et al.10 The numbers along with the header give total

number of queries belonging to each class. All the hits are counted based on first

10 ranking alignments compared to 100 hits taken by Carpentier et al., only for

those methods that did not return the significance of hits.
aOne query has no target in our database.
bFor mainly b class, query protein 1vmo has no target in our database and query

1ciy misses target in top ten ranks.
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can only be captured by GA algorithm having lower gap

penalty compared to high penalty imposed by LA

approach. Use of simple GA algorithm combined with

PB substitution table highlights subtle similarities identi-

fied by PB-ALIGN method based on local backbone

descriptors (PBs). Figure 3(b) also shows a query protein

(1bge) for which target protein (2gf) was not found even

after using GA. Close inspection of PB alignment reveals

four helical regions are well aligned despite the differen-

ces in helix length. Presence of many gaps to obtain this

alignment results in very low alignment score, which

pushed down the pair below the top hits. Another exam-

ple where target (2fox) was found by using GA is query

protein 3chy from mainly-ab class; Figure 3(c) shows

superimposition of 3chy and 2fox from ProFit based on

global PB alignment. Once again identification of such

similarities is not possible by using LA techniques due to

the presence of variable regions and has to be accommo-

dated by gaps in an alignment. The above results show

that the possibility to align PB sequences using local or

GA techniques offers flexibility to recognize both strong

local similarity and distant (variable) global similarities

shared by proteins.

Figure 3
Global alignment of PB sequences. (a) PB sequence alignment and superimposed structures for protein pair 1crb and 2 gfA. Target protein 2 gfA is found after using GA.

(b) PB sequence alignment and superimposed structures for protein pair 1bgeB and 2 gfA. GA fails to find target protein 2 gfA. (c) Superimposed structures of 3chy and

2fox based on GA of PB sequences. Structural alphabet notation is explained in de Brevern et al.37,38

Table VIII
Performance of Local and Global Alignment Algorithm on Nontrivial Dataset

Query
protein

Target
protein

Local
alignment

Global
alignment

Cut-off value
on GA alignment

1aep 256b:A 0 0 0 (20.29)
2mta:C 1ycc 0 0 0 (20.74)
1rcb 2gmf:A 0 1 (48)a 1 (10.02)
1bge:B 2gmf:A 0 0 0 (20.34)
2afn:A 1aoz:A 1 (10)b 0 0 (20.48)
3hla:B 2rhe 0 0 1 (10.23)
2aza:a 1paz 0 0 0 (20.29)
1cew:I 1mol:A 0 1 (59)a 1 (20.06)
1dsb 2trx:A 0 0 0 (20.68)
1fxi:A 1ubq 1 (42) 1 (28)c 1 (10.26)
3chy 2fox 0 1 (33)a 1 (10.18)
1gpl 2trx:A 0 0 0 (21.94)
1hip 2hip:A 1 (6) 1 (7) 1 (10.56)
1isu:A 2hip:A 1 (59) 1 (15)c 1 (10.14)

In total, both methods were able to find seven target proteins. Success and failure

of GA and LA is indicated by 0 (failure) and 1 (success). Here, target rank is indi-

cated within parenthesis. Success of GA based on the application of a cut-off value

of 20.25 is also indicated by 0 if score <20.25 (failure) and 1 if score is >20.25

(success). Values within parentheses are the normalized alignment score (see text

for details).
aTarget exclusively found by GA.
bTarget protein missed by GA.
cImprovement in rank using GA.
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Protein 2afn was the only query where LA outper-

formed GA. Prime reason of GA failure can be under-

stood from the fact that query protein chain 2afnA con-

tain multiple domains, and GA against our database will

need to introduce large number of gaps resulting in low

alignment score, whereas in case of LA algorithm only

probe and target domains are aligned with high align-

ment score. These results indicate usage of GA algorithm

on sequence of PBs (encoding local structure variations)

is better suited to situations where structural similarities

are shared at global level and are difficult to obtain with

LA techniques. In situations, where protein chains are

suspected to contain multiple domains or one protein

structure is completely or partially contained in other

protein, LA approach proves more advantageous.

GA of few difficult pairs showed at global level that

the method was able to align equivalent regions in two

proteins, but due to the low scores, such pairs were

missed altogether by database search approach. We

extended above analysis by studying pairwise alignment

of tough cases and compared alignment results with flex-

ible alignment method called FATCAT. We selected 10

difficult pairs used by Ye et al. and compared PB-ALIGN

with VAST, DALI, CE, and FATCAT based on number of

residues aligned and superposition rmsd obtained. Table

IX shows number of residues aligned along with rmsd

values (within brackets) based on GA of PB sequences.

Other methods are compared based on the results

obtained by Ye et al. In our case, superposition of two

proteins was done using ProFit based on alignment pro-

vided by PB-ALIGN and further iterations were per-

formed by ProFit to obtain final results. In other words,

results presented in Table IX are combined effort of PB-

ALIGN and ProFit. To measure the contribution of

ProFit, we also performed another exercise where super-

position was performed based on sequence alignment

generated by ProFit to define initial equivalent zones and

carried out iteration from there on to get final values.

Results we obtained are very interesting, since ProFit

alone by itself gave comparable results to FATCAT and

PB-ALIGN in 7 out of 10 cases. Remaining three pairs

(1cewI, 1molA; 1cid_,2rhe_; 1crl_,1ede_) gave much

improved results when combined with PB-ALIGN. This

outcome has two implications: first, ProFit by itself is

good enough superimposition method to superimpose

protein pairs sharing low sequence similarity and can

achieve comparable results to more complex and robust

methods; second, in the cases where ProFit fails to find

optimal results by simple amino acid sequence alignment,

PB alignment provides good starting points to ProFit,

unidentifiable by sequence alignment alone. In all ten

cases, PB-ALIGN coupled with ProFit gave desirable

results compared to other complex methods. When com-

pared to a flexible alignment and superimposition

method FATCAT, PB-ALIGN gave low rmsd in most of

the cases with slightly less number of residues super-

posed. It is noteworthy that methods like FACAT has real

advantage in this study where it introduces twists in

structures to superimpose more residues with low rmsd

and despite this advantage our simple methodology gave

decent results. The only test case (pair 1crl_, 1ede_)

where PB-ALIGN produces significantly lower results

compared to FATCAT can be understood from the fact

that five twists were introduced in protein structure to

superimpose 269 residues with a rmsd of 3.55 Å. In its

present form, though PB-ALIGN will align PB sequences

in a flexible manner, it is still not capable to produce

such results as it relies on rigid body superposition

method. Objective of this analysis was not to compete

with methods like FATCAT (which we believe in principle

will give better results specially in cases where twists are

needed to superpose structures) but it is to highlight, (i)

despite using very simple approach, PB alignment tech-

nique gives comparable results in most of the situations

with minimum computation time making it practical for

large scale analysis in real life situations and (ii) premises

Table IX
Comparison of PB-ALIGN and FATCAT

Protein 1 Protein 2 VAST DALI CE FATCAT PBALIGN ProFit

1fxiA 1ubq_ 48 (2.1) 60 (2.6)a 64 (3.8)a 63 (3.01) 59 (2.6) 55 (2.0)
1ten_ 3hhrB 78 (1.6) 86 (1.9) 87 (1.9) 87 (1.9) 82 (4.1) 84 (4.0)
3hlaB 2rhe_ — 63 (2.5) 85 (3.5) 79 (2.81)b 67 (2.4) 73 (2.6)
2azaA 1paz_ 74 (2.2) 81 (2.5)a 85 (2.9) 87 (3.01) 79 (2.3) 79 (1.9)
1cewI 1molA 71 (1.9) 81 (2.3) 69 (1.9) 83 (2.44) 74 (2.5) 16 (2.5)
1cid_ 2rhe_ 85 (2.2) 95 (3.3) 94 (2.7) 100 (3.11) 87 (2.2) 25 (2.9)
1crl_ 1ede_ — 211 (3.4) 187 (3.2) 269 (3.55)b 179 (2.3) 75 (2.9)
2sim_ 1nsbA 284 (3.8) 286 (3.8) 264 (3.0) 286 (3.07) 262 (2.4) 264 (2.4)
1bgeB 2gmfA 74 (2.5) 98 (3.5) 94 (4.1) 100 (3.19) 90 (2.4) 88 (2.4)
1tie_ 4fgf_ 82 (1.7) 108 (2.0) 116 (2.9) 117 (3.05) 105 (2.2) 104 (2.1)

Comparison of various methods based on number of residues aligned and rmsd (within brackets) obtained for 10 difficult examples based on global alignment. Results

for other methods is taken from Ye et al.30

aNo results obtained in previous study done by Ye et al.30

bFATCAT introduced twists in structures to perform superposition.
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for flexible structural superimposition as performed by

FATCAT are featured in the method of PB alignments

owing to the nature of the algorithm used.

Handling of multidomain proteins

PB-ALIGN was also tested on two multidomain

proteins, 2src_ and 2hckA (human Src and Hck kinase

proteins, respectively), to assess efficiency of method to

handle protein chains containing multiple domains dur-

ing database search. The database used in our case is a

collection of domains on SCOP classification; hence, it

was calculated whether the method is able to extract tar-

get domains among top hits. As seen above, LA tech-

nique has advantages over GA algorithm in such cases.

Hence, in the present analysis, we used LA algorithm to

extract different domains from database. Based on SCOP

classification, query proteins are composed of three dif-

ferent domains, namely SH3 domain, SH2 domain, and

protein kinases catalytic subunit. Our evaluation on mul-

tidomain proteins is slightly different from the earlier

studies,3,10 where success was measured if hits contained

all the four domains (based on CATH classification) fol-

lowed by proteins having two or one domain. In our

study, we assessed if all the domains (SH3 domain, SH2

domain, and protein kinases catalytic subunit based on

SCOP definition) are present among Top 100 hits. Previ-

ous studies reported that YAKUSA, DALI, VAST,

MATRAS, and CE gave best results while handling multi-

domain cases. SSM found proteins having all four

domains, and TOP and DEJAVU found structures sharing

more than one domain while having a blind eye to single

domain structures. LOCK managed to find representative

of each domain, but failed to find proteins having all

domains in single chain. TOPSCAN, PRIDE, and TOPS

were among least efficient methods. PB-ALIGN was able

to find all three target domains among top hits. SH2 and

kinases catalytic subunit domains were most easily found

and were populated among top hits. SH3 domain was

always found in at lower ranks (61st and 37th rank), and

Figure 4
Distribution of normalized scores after PBs alignment between pairs of proteins from the same fold or super-family (top) and from different folds or super-families

(bottom).
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this can be attributed to smaller length and high popula-

tion of other two domains in our database.

Cut-off threshold for PB-ALIGN scores to
recognize common folds

On the basis of various assessment exercises described

above, we worked out a recommended threshold for the

PB-ALIGN scores that will allow one to designate a hit

in a structural database as same fold as that of the query.

Figure 4 provides a distribution of scores of PB-ALIGN

for the cases of common fold and different fold

(according to SCOP). This figure shows that a region of

scores is taken-up by proteins with the same fold as well

as different fold. As fold space is a continuum, it will be

difficult to have a precise score that will completely seg-

regate same folds from different folds. We hence analyzed

the variation of sensitivity and specificity for different

normalized score thresholds (see Fig. 5). Because we

want to typically minimize false positives while having an

acceptable level of sensitivity (true positives), we propose

to select appropriate cut-off at a stringent specificity

value of 0.95. Hence on the basis of the aforementioned

specificity value, the normalized score cut-off value was

20.250 and the sensitivity for proteins from the same

fold was of 0.75. Similarly, for proteins from the same

superfamily, the score cut-off value was 20.252 and a

sensitivity of 0.87. Hence, we suggest a threshold value of

20.250 to discriminate between proteins from the same

fold or same super-family. This cut-off works correctly

for demarcation of same folds or super-family from dif-

ferent folds or super-family although not for all the cases.

Going by this argument cut-off, a total of 75% and 87%

of the proteins with the same fold and super-family as

the query, respectively, are correctly picked-up by PB-

ALIGN. Importantly, rate of false hits is only of 5% in

both situations.

Understanding whether the observed PB sequence sim-

ilarity is just a chance event is the central problem for

the evaluation of the statistical significance of alignment

scores. The basic question to be answered is what is the

probability that a similarity score as great as that actually

observed between real sequences could have arisen by

chance, when sampling from suitably-defined populations

of unrelated sequences? To address this question, the dis-

tribution of GA scores from real but unrelated sequences

Figure 5
Analysis of variation of sensitivity and specificity according to different cut-off scores.

Table X
Estimates of Extreme Value Distribution Parameters for Alignment Scores

Between Real but Unrelated Sequences of Different Sequence Length Subsets

(See Also Fig. 7)a

Length
(number of
residues)

Shape
parameter

(n)

Scale
parameter

(r)

Location
parameter

(l)

40 0.376 0.673 0.993
70 0.359 0.539 0.831
100 0.368 0.506 0.774
130 0.349 0.418 0.685
160 0.397 0.353 0.621
190 0.406 0.384 0.644
220 0.416 0.354 0.599
250 0.424 0.358 0.535
280 0.444 0.337 0.480
310 0.402 0.261 0.519
340 0.435 0.278 0.540
370 0.456 0.262 0.520
400 0.477 0.242 0.499

aThese parameters were derived using gev function in evir package implemented

in R statistical software.51
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for different length subsets (40-aa through 400-aa by 30-

aa increment, see also Table X) need to be analyzed. As

shown for three examples in Figure 6, alignment scores

were distributed according to an extreme value distribu-

tion (EVD). We hence derived all three corresponding

EVD parameters (Table X), which could be used to mea-

Figure 6
Distribution of scores from global alignments of real but unrelated sequences (RUSs) datasets of 40-aa, 190-aa, and 400-aa long. The distribution of the scores was

estimated with extreme value distribution curve indicated in solid line using evir package from R statistical software.51 On the right are displayed the corresponding

quantile plots.
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sure confidence of alignment scores to classify two pro-

teins as having the same fold or belonging to same

super-family. The scale parameter (r) linearly decreased

with length alignment, which further comforts the

inferred EVD distribution model (see Fig. 7).

CONCLUSIONS

In the era of structural genomics, protein structure

comparison and mining plays an important role in com-

putational biology. Identification of new phylogenic rela-

tionships, functional annotation, and study of sequence

to structure relationships are some of its most common

targets. In this study, we have presented a new structure

mining method called PB-ALIGN, based on the encoding

of protein backbone as sequence of short local motifs

(PBs) and their alignment using a newly derived PB sub-

stitution matrix and simple dynamic programming. The

method is simple and is scalable for large scale analysis

and provides an alternative tool for structural genomics.

Use of local structural features (PBs) to describe protein

backbone and alignment of such features provides an al-

ternative to previously known methods like DALI and

CE for mining protein domains. Existing methods rely

on SSEs’ information for structure alignment and misses

out on large amount of structural information beside

regular structures in proteins. PB representation of pro-

tein backbone highlights subtle variations and structural

conservations present beyond local regular structures, for

example, N and C caps of helices and strands. Capability

of PB-ALIGN to align these regions is a step ahead of

existing methods.

The method is performing reasonably well in mining

structurally similar proteins from large database at both

fold and super-family level. Among peer comparison,

PB-ALIGN stood out at par with other methods to mine

structures and at best in terms of speed. Ability to obtain

good mining capacity at high speed highlights the sim-

plicity and effectiveness of the method. Generally speak-

ing, the efficiency of PB ALIGN as a pairwise comparison

tool still needs to be assessed in an in-depth benchmark

in comparison with extensively tested, robust, and stand-

ard methods such as CE, DALI, and VAST. Nevertheless,

compared to methods like YAKUSA that also relies on

representation of local structural features, our method

performed superior on general test data and at par on

difficult (nontrivial) dataset. The main difference between

these two methods is the final objective. YAKUSA aims

to locate strong gap-free local structural similarities or

‘‘blocks’’10 between two proteins and is not concerned

with global similarities spread over protein length,

whereas PB-ALIGN despite using local structural features

aims to address both local and global similarity between

proteins. Availability of PB substitution matrix and use

of local or global sequence alignment techniques help to

answer both local and global structure similarities. Both

alignment techniques are shown to be useful in different

conditions, for example, LA is beneficial if one wants to

identify strong local similarities or if protein chain is

multidomain or if one protein is completely or partially

included in other structure. GA is useful if two proteins

share structural similarities spread across protein length.

Our experience suggests that user should use both local

and GA feature, and manual inspection of PB alignments

will clearly highlight the best approach. Another advant-

age we found in PB-ALIGN is intuitive nature of PB

alignment representing structure alignment, and many

times, simple inspection of alignment gives hint about

structural differences between proteins prior to 3D visu-

alization.

Importantly, this study derived a score cut-off, for the

inference of structural similarity between structural

domains whose relationship is unknown using their PB

representations. It further specified the extreme value

distribution of GA scores of real but unrelated PB

sequences. This information is currently being used to

implement a statistical significance threshold in PB-ALIGN.

Comprehensive assessment of our methodology also

highlighted some shortcomings and need of further fine-

tuning of PB-ALIGN. At present, we have used simple

dynamic programming and linear gap penalty. We believe

use of more robust flavor of dynamic programming and

change in gap penalty will further improve the alignment

quality. Artificial increase in alignment score due to long

stretch of regular structures especially in a class proteins

Figure 7
Variation of estimates of EVD scale parameter (r) with length of protein

sequences calculated from global alignments of real but unrelated sequences

(RUSs) datasets (see Table X). Fitted regression line with R2 5 0.85

(P < 0.0001) as shown in solid line was calculated using lm function from

R statistical software.51

Protein Structure Mining Using a Structural Alphabet

PROTEINS 935



is also being looked into and change in scoring function

is anticipated. Furthermore, we would like to introduce

combined scoring function taking into account number

of aligned residues, rmsd value, and alignment score. We

believe that the use of PB alignment methodology to per-

form multiple alignment of family members would ena-

ble use to define ‘‘core’’ structures having boundaries

beyond SSEs and would help in finding distant homo-

logues. PB-ALIGN is also expected to be useful in

homology modeling and loop modeling.

ACKNOWLEDGMENTS

We thank informatics department for their support

during the access of super computer facility. We thank

anonymous reviewers for their fruitful comments. N.S. is

a senior fellow of the Wellcome Trust, London and is a

visiting Professor to the Reunion University.

REFERENCES

1. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig

H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids

Res 2000;28:235–242.

2. Murzin AG, Brenner SE, Hubbard T, Chothia C. SCOP: a structural

classification of proteins database for the investigation of sequences

and structures. J Mol Biol 1995;247:536–540.

3. Novotny M, Madsen D, Kleywegt GJ. Evaluation of protein fold

comparison servers. Proteins 2004;54:260–270.

4. Kolodny R, Koehl P, Levitt M. Comprehensive evaluation of protein

structure alignment methods: scoring by geometric measures. J Mol

Biol 2005;346:1173–1188.

5. Perutz MF. Structure of hemoglobin. Brookhaven Symp Biol

1960;13:165–183.

6. Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thorn-

ton JM. CATH—a hierarchic classification of protein domain struc-

tures. Structure 1997;5:1093–1108.

7. Shindyalov IN, Bourne PE. An alternative view of protein fold

space. Proteins 2000;38:247–260.

8. Tyagi M, Sharma P, Swamy CS, Cadet F, Srinivasan N, Brevern AG,

Offmann B. Protein block expert (PBE): a web-based protein struc-

ture analysis server using a structural alphabet. Nucl Acids Res

2006;34:W119–W123.

9. Holm L, Sander C. Protein structure comparison by alignment of

distance matrices. J Mol Biol 1993;233:123–138.

10. Carpentier M, Brouillet S, Pothier J. YAKUSA: a fast structural

database scanning method. Proteins 2005;61:137–151.

11. Krissinel E, Henrick K. Secondary-structure matching (SSM), a new

tool for fast protein structure alignment in three dimensions. Acta

Crystallogr D Biol Crystallogr 2004;60(Pt 12 Pt 1):2256–2268.

12. Blades MJ, Ison JC, Ranasinghe R, Findlay JBC. Automatic genera-

tion and evaluation of sparse protein signatures for families of pro-

tein structural domains. Protein Sci 2005;14:13–23.

13. Miguel RN. Sequence patterns derived from the automated predic-

tion of functional residues in structurally-aligned homologous pro-

tein families. Bioinformatics 2004;20:2380–2389.

14. Domingues FS, Lackner P, Andreeva A, Sippl MJ. Structure-based

evaluation of sequence comparison and fold recognition alignment

accuracy. J Mol Biol 2000;297:1003–1013.

15. Sauder JM, Arthur JW, Dunbrack RL, Jr. Large-scale comparison of

protein sequence alignment algorithms with structure alignments.

Proteins 2000;40:6–22.

16. Friedberg I, Kaplan T, Margalit H. Evaluation of PSI-BLAST align-

ment accuracy in comparison to structural alignments. Protein Sci

2000;9:2278–2284.

17. Escalier V, Pothier J, Soldano H, Viari A. Pairwise and multiple

identification of three-dimensional common substructures in pro-

teins. J Comput Biol 1998;5:41–56.

18. Shindyalov IN, Bourne PE. Protein structure alignment by incre-

mental combinatorial extension (CE) of the optimal path. Protein

Eng 1998;11:739–747.

19. Taylor WR, Orengo CA. Protein structure alignment. J Mol Biol

1989;208:1–22.

20. Levine M, Stuart D, Williams J. A method for the systematic com-

parison of the three-dimensional structures of proteins and some

results. Acta Crystallogr 1984;40:600–610.

21. Usha R, Murthy MR. Protein structural homology: a metric

approach. Int J Pept Protein Res 1986;28:364–369.

22. Singh AP, Brutlag DL. Hierarchical protein structure superposition

using both secondary structure and atomic representations. Proc

Int Conf Intell Syst Mol Biol 1997;5:284–293.

23. Lu G. TOP: a new method for protein structure comparisons and

similarity searches. J Appl Crystallogr 2000;33:176–183.

24. Gibrat JF, Madej T, Bryant SH. Surprising similarities in structure

comparison. Curr Opin Struct Biol 1996;6:377–385.

25. Harrison A, Pearl F, Mott R, Thornton J, Orengo C. Quantifying

the similarities within fold space. J Mol Biol 2002;323:909–926.

26. Zuker M, Somorjai RL. The alignment of protein structures in three

dimensions. Bull Math Biol 1989;51:55–78.

27. Subbiah S, Laurents DV, Levitt M. Structural similarity of DNA-

binding domains of bacteriophage repressors and the globin core.

Curr Biol 1993;3:141–148.

28. Vriend G. WHAT IF: a molecular modeling and drug design pro-

gram. J Mol Graph 1990;8:52–56, 29.

29. Shatsky M, Nussinov R, Wolfson HJ. Flexible protein alignment

and hinge detection. Proteins 2002;48:242–256.

30. Ye Y, Godzik A. Flexible structure alignment by chaining aligned

fragment pairs allowing twists. Bioinformatics 2003;19 (Suppl

2):II246–II255.

31. Offmann B, Tyagi M, de Brevern AG. Local protein structures. Curr

Bioinf 2007;2:1–38.

32. Jones TA, Thirup S. Using known substructures in protein model

building and crystallography. EMBO J 1986;5:819–822.

33. Unger R, Harel D, Wherland S, Sussman JL. A 3D building blocks

approach to analyzing and predicting structure of proteins. Proteins

1989;5:355–373.

34. Levitt M. Accurate modeling of protein conformation by automatic

segment matching. J Mol Biol 1992;226:507–533.

35. Unger R, Sussman JL. The importance of short structural motifs in

protein structure analysis. J Comput AidedMol Des 1993;7:457–472.

36. Yang JM, Tung CH. Protein structure database search and evolu-

tionary classification. Nucleic Acids Res 2006;34:3646–3659.

37. de Brevern AG. New assessment of a structural alphabet. In Silico

Biol 2005;5:283–289.

38. de Brevern AG, Etchebest C, Hazout S. Bayesian probabilistic

approach for predicting backbone structures in terms of protein

blocks. Proteins 2000;41:271–287.

39. Tyagi M, Gowri VS, Srinivasan N, de Brevern AG, Offmann B. A sub-

stitution matrix for structural alphabet based on structural alignment

of homologous proteins and its applications. Proteins 2006;65:32–39.

40. Dudev T, Lim C. Effect of carboxylate-binding mode on metal

binding/selectivity and function in proteins. Acc Chem Res

2007;40:85–93.

41. Tyagi M, Sharma P, Swamy CS, Cadet F, Srinivasan N, de Brevern

AG, Offmann B. Protein Block Expert (PBE): a web-based protein

structure analysis server using a structural alphabet. Nucleic Acids

Res 2006;34 (Web Server issue):W119–W123.

42. Smith TF, Waterman MS. Identification of common molecular sub-

sequences. J Mol Biol 1981;147:195–197.

M. Tyagi et al.

936 PROTEINS



43. Needleman SB, Wunsch CD. A general method applicable to the

search for similarities in the amino acid sequence of two proteins.

J Mol Biol 1970;48:443–453.

44. Schuchhardt J, Schneider G, Reichelt J, Schomburg D, Wrede P.

Local structural motifs of protein backbones are classified by

self-organizing neural networks. Protein Eng 1996;9:833–842.

45. Tyagi M, Venkataraman SG, Srinivasan N, de Brevern AG, Offmann

B. A substitution matrix for structural alphabet based on structural

alignment of homologous proteins and its applications. Proteins

2006;65:32–39.

46. Balaji S, Sujatha S, Kumar SS, Srinivasan N. PALI—a database of

Phylogeny and ALIgnment of homologous protein structures.

Nucleic Acids Res 2001;29:61–65.

47. Gowri VS, Pandit SB, Karthik PS, Srinivasan N, Balaji S. Integration

of related sequences with protein three-dimensional structural fami-

lies in an updated version of PALI database. Nucleic Acids Res

2003;31:486–488.

48. Russell RB, Barton GJ. Multiple protein sequence alignment from

tertiary structure comparison: assignment of global and residue

confidence levels. Proteins 1992;14:309–323.

49. McLachlan AD. Rapid comparison of protein structures. Acta Crys-

tallogr A Fundam Crystallogr 1982;38:871–873.

50. Lu G. TOP: a new method for protein structure comparisons and

similarity search. J Appl Crystallogr 2000;33:176–183.

51. Ihaka R, Gentleman R. A language for data analysis and graphics.

J Comput Graph Stat 1996;5:299–314.

Protein Structure Mining Using a Structural Alphabet

PROTEINS 937


