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ABSTRACT We present a simple method for
the analysis of large networks based on their graph
spectral properties. One of the advantages of this
method is that it uses a single numerical computa-
tion to identify subclusters in a connected graph,
which can significantly simplify the complexity in-
volved in analyzing large graphs. This is illustrated
using a network of protein chains constructed on
the basis of their structural similarities. The large-
scale network properties and the cluster and sub-
cluster organization of the protein chain network
are presented. We summarize the results of struc-
tural and functional analyses of the nodes present
in these clusters and elucidate the implications of
structural similarity in the protein chain universe.
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INTRODUCTION

There has been a great deal of recent interest in
understanding the geometry and topology of biological
networks.1 These studies have been guided by the insights
gained from the analyses of other real-world networks
such as the World Wide Web and social networks.2 These
networks have been described as small-world networks
and scale-free networks based on some of their simple
characteristics. For example, scale-free networks exhibit a
power-law degree distribution rather than the exponential
distribution expected for random networks.2 A similar
analysis has been carried out on biological networks
including metabolic networks,3 transcription regulatory
networks,4 protein–protein interaction networks5 and pro-
tein domain networks.6,7 Most of these networks may be
classified as scale-free networks. One of the common
features of all these networks (biological and nonbiologi-
cal) is that they are very large with thousands of nodes and
edges and hence their analysis becomes very intensive and
difficult. With the growing complexity of biological net-
works due to the availability of many genome sequences,
simpler methods of analyzing such large networks are
required. We present one such simple method in this
paper, which uses a combination of traditional clustering
algorithms like the depth first search (DFS) and a graph
spectral method to identify clusters and subclusters pro-
gressively in a large network. Such an algorithm helps in

understanding the large-scale properties of the networks
as well as in analyzing the details of the connections seen
in the networks at the individual node level to understand
their biological implications. Hence, the methodology pre-
sented in this paper could prove to be useful to systems
biologists and genome biologists. The graph spectral
method presented here has already been used to identify
amino acid clusters of biological significance in protein
structures8,9 and also to automatically partition multido-
main protein structures into individual domains.10 The
identification of structural domains in a multidomain
protein uses the fact that the amino acids contacts are
much higher within the domain than across domains.
Hence, in a connected graph representation of protein
structure, the spectra of the graph gives information
regarding the subclusters in the graph, which in the case
of multidomain proteins happen to be the domains. Hence,
the nodes forming the subclusters in the graph are parti-
tioned into structural domains.

We illustrate the power of the graph spectral method by
analyzing the protein chain universe graph (PCUG), con-
structed based on the structural similarities between
protein chains. Earlier, a similar network was constructed
and analyzed by Dokholyan et al.6 However, they used
protein domains rather than protein chains in their analy-
sis in order to obtain an evolutionary perspective on the
protein domains. The motivation for the use of complete
protein chains rather than protein domains comes from
the fact that more than 80% of the eukaryotic genomes are
composed of multidomain proteins,11 where each protein is
made up of more than one domain contributing to the same
overall biological function. Hence, the analysis of protein
structures beyond the domain level is required to under-
stand the organization of protein chains in structure space
and the combinations of protein domains in the chain
universe. Keeping this in mind, we have generated the
PCUG using the DALI Z score12 as the structure similarity
index and have analyzed some of the basic network
properties of the PCUG and the biological properties
observed in the clusters and subclusters of PCUG. Some of
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the specific clusters obtained in the PCUG are presented in
detail to elucidate the advantages of the graph-spectral
method and to obtain some biological insights on the chain
universe.

MATERIALS AND METHODS
Data Set

The data set for the present work was obtained from the
FSSP representative set, release Dec 2004.13 It contains
protein chains present in PDB9014 (PDB with sequence
identity cutoff of 90%). The dataset was clustered using
the program blastclust15 to obtain a nonredundant set at
25% sequence identity. For each protein chain in the
representative set, FSSP gives all its structural neighbors
(defined as chains showing DALI Z score greater than 2)
and their respective DALI Z scores. The greater the DALI
Z score between a pair of chains, the more similar are the
structures of the two chains.

Construction of PCUG

The Protein Chain Universe Graph (PCUG) is con-
structed as follows. Each chain is a node and those nodes
with a structural similarity score above a chosen Z cutoff
(called Zmin) are connected by an edge. All edges/connec-
tions are given equal weight of one. In order to perform
numerical analysis on the PCUG, it is represented as an
adjacency matrix, which is an n � n matrix in which n is
the no of nodes (chains) in the graph. The adjacency matrix
[A], is created with the following rules:

�A�ij � 1 if Zij � Zmin

� 0 if Zij � Zmin

� 0 if i � j

where [A]ij is the ijth element of the matrix and Zij is the
DALI Z score between chains i and j. For generation of
weighted matrices, the value of [A]ij is set to the Z score of
the domain pair. The adjacency matrix is symmetric
because the structural similarity is a symmetric relation-
ship. PCUGs were generated using different Zmin values
varying from 2 to 20 and were analyzed using DFS and
graph spectral methods as explained in the next few
subsections.

Clustering of PCUG Using DFS

DFS (Depth First Search) graph algorithm16 is one of
the traditionally used methods to identify clusters in a
graph. This method is used here to obtain information on
the clusters obtained in the PCUGs generated at Zmin

values 2 to 20. DFS identifies the disjoint clusters present
in PCUG. The clusters are then visualized using Graph-
Viz17 to obtain the details of the connectivity within the
cluster. The clusters were then individually analyzed
using the Graph Spectral method, as described in the next
section.

Graph Spectral Analysis

Graph spectral analysis is a sub-branch of graph theory
dealing with the analysis of the spectra (eigenvalues and

eigenvector components) of the nodes in the graph. Such an
analysis can reveal information about the global arrange-
ment of nodes in the graph and hence can be very useful in
the analysis of large graphs. A brief description of the
analysis is given here. To generate the eigenvalue spectra of
the graph, the adjacency matrix of the graph (as given in the
previous section) is converted to a Laplacian matrix, which is
defined as the matrix obtained by subtracting the adjacency
matrix from the degree matrix (L � D � A). The degree
matrix is a diagonal matrix in which the ith element on the
diagonal is equal to the no of connections, which the ith node
makes in the graph with other nodes. For the weighted
degree matrix, the diagonal element is equal to the sum of
weights of all connections emerging from the node.

Diagonalization of the Laplacian matrix yields the spec-
tra of the graph comprising of the eigenvalues and the
corresponding eigenvector components. The analysis of
the vector components of the lower and the higher eigenval-
ues have been shown to give information about the cluster-
ing of nodes in the graph and the connectivity of each
node.8,9 The second lowest eigenvalue and the vector
components corresponding to it yield information about
the clusters present in the graph with all nodes of a given
cluster having the same value of the vector component.8,9

Interestingly, in a completely connected graph, where all
nodes belong to a single cluster, the vector components of
the second lowest eigenvalue give subcluster information,
where the nodes within a subcluster have similar vector
component values. A “subcluster” is defined as a set of
nodes within the cluster, which make significantly more
connections among themselves than with the other nodes
in the cluster. A plot of the sorted vector components can
bring out the subcluster information very well. In this plot,
the nodes that are part of a subcluster show up as distinct
plateaus on a curve that otherwise show a monotonously
increasing behavior.

Structural and Functional Analysis

The structural classification of the proteins present in
the clusters and subclusters obtained using DFS and the
graph spectral method is identified from the SCOP data-
base.18 The functions of these proteins are identified from
the FSSP file of the chain, which reports the COMPND
record from the corresponding PDB file. This is useful for
the analysis of the structure–function correlations be-
tween the chains present in a cluster.

RESULTS AND DISCUSSION

The protein chain universe graph (PCUG) is constructed
from a nonredundant set of protein chains (3477) with
known structures, using the DALI Z score as the edge-
forming criterion (given in detail in Method section). The
clusters in the PCUG obtained for different Zmin scores
have been identified using the DFS method. The details of
the protein chains present in the clusters obtained at Zmin

score 11 are given in a supplementary table. The proper-
ties of the PCUG in terms of scale-free and random
behavior are presented in the next section. Further analy-
sis of the intricate details and the nature of connectivity is

PROTEIN CHAIN STRUCTURAL SIMILARITY NETWORK 153



presented below in the section “Subcluster identification
form the second-lowest eigenvalue.” Finally, an analysis of
the structural and functional correlations embedded in the
clusters and subclusters of PCUG is presented below in the
section “Structural and Functional Features of the Clus-
ters Seen in PCUG.”

Network Properties of PCUG

The details of clusters in PCUG obtained at Zmin scores
of 2 to 15 are given in Table I. As expected, the number of
orphans (nodes with zero connections) increases and the
graph becomes more disjoint as Zmin increases. The net-
work properties of PCUG are analyzed in terms of the
parameters presented below.

Size of the largest cluster and degree distribution as
functions of Zmin

The size of the largest cluster is plotted as a function of
Zmin in Figure 1(A), which shows a transition around the
Zmin of 11. We have also analyzed the degree distribution
of the nodes in the PCUGs generated at various Zmin

values. We find that at lower Zmins, PCUG shows the
behavior characteristic of a random graph with the degree-
distribution not following power-law behavior. However,
as Zmin is increased, the number of connections in the
graph decreases and approximate power-law behavior is
observed in the log–log plots of the degree distribution at
higher Zmin values (beyond 6). However, the best fit to the
power-law is seen at Zmin � 11 with an exponent value of
1.8. The log–log plot of the degree distribution in PCUG at
Zmin � 11 is shown in Figure 1(B), where the curve is
clearly linear. The protein domain universe graph (where
each protein domain was considered as a node) analyzed
by Dokholyan et al.,6 was also found to show a power-law
degree distribution at a cutoff Zmin of 9, around which it is
scale-free. Further, the power-law fit deteriorated both
above and below the Zmin of 9. However, the number of
orphans remains dominant in case of the domain graph at
all Zmin values. The protein chain universe graph pre-

sented here shows power-law degree distributions only at
higher Zmins and orphans do not dominate at lower Zmins.
Hence the PCUG is random at lower Zmins and becomes
scale-free only at higher Zmins. This is similar to the
behavior observed in structure space of the lattice model,19

where the scale-free behavior is seen only above a thresh-
old value of the similarity score.

Degree density

The degree density of a connected graph is evaluated as
the ratio of the average number of connections observed
per node and the maximum number of connections pos-
sible if the graph was a clique (a complete graph where
each node is connected to every other node). The maximum
degree density value is one, which is seen in the case of
cliques. The degree density of the PCUG is evaluated at
different Zmins and the plot of the degree density versus
Zmin is shown in Figure 1(C). The log–log plot of the same
figure is shown in Figure 1(D). Figure 1(C,D) shows that
the degree density versus Zmin also follows power-law
behavior with an exponent of 2.2.

We alert the reader that the results presented here
pertain to the limited dataset currently available, which
has many truncated proteins. The proportion of multido-
main chains in PCUG is around 30% whereas in the actual
chain universe, it is somewhere around 65%.11 This is due
to the fact that multidomain proteins are not easy to study
by existing methods of structure determination. For ex-
ample, the structure of almost all the domains of Protein
Kinase C has been solved, but the structure of the full
chain is still not available. Hence the PCUG generated
here is not a complete representation of the actual chain
universe and our evaluation of this network is subject to
the constraint of data limitation. However, for the actual
chain universe with many more multidomain chains, one
would necessarily have a larger number of connections and
the connections that we see here are a subset of the actual
chain universe. Hence, the structural similarities seen
here are genuine and will not be affected due to the
presence of truncated proteins.

Henceforth, we will present analysis of PCUG at Zmin �

11 because the size of the largest cluster Vs. Zmin shows a
transition at Zmin � 11 and the power-law fit to the degree
distribution is best at this value. Moreover, we get clusters
with sizes that can be easily handled for individual node
and connectivity analyses at this Zmin.

Subcluster Identification from the Second-Lowest
Eigenvalue

Clusters in a network can be differentiated into two
types based on the organization of connections between
the nodes present in them. We define a “simple cluster” as
one in which the nodes do not form any distinguishable
subclusters and a “complex cluster” as one in which there
are two or more distinguishable subclusters. Many of the
large-scale networks have both simple and complex clus-
ters and hence the identification of subclusters makes the
analysis of the large networks easier. The graph spectral
algorithm presented here (as explained in the Materials

TABLE I. Cluster Sizes Obtained From PCUGs
at Different Zmin Values†

Zmin value Number of orphans
Sizes of the top five large

clusters

2 182 3178,23,12,10,7
3 328 2946,19,12,9,7
4 520 2607,20,14,11,10
5 721 2263,14,12,11,10
6 944 1932,20,13,12,12
7 1150 1559,16,15,12,12
8 1318 1134,37,37,29,25
9 1463 916,36,25,23,20

10 1620 565,48,36,26,23
11 1747 326,45,40,35,30
12 1873 289,34,34,28,25
13 2010 147,92,23,22,15
14 2115 122,79,23,20,15
15 2224 81,75,27,23,16

†From DFS method.
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and Methods section) gives an objective way to obtain the
subclusters in a connected cluster, where the vector compo-
nents of the second lowest eigenvalue (represented by 2evc
henceforth) give information about the subclusters. The
identification of subclusters from the eigenvalue spectra can
be done easily by plotting the sorted eigenvector components
of the second lowest eigenvalue versus node number (the
2evc plot). The nodes forming subclusters show up on this
plot as having the same or very similar vector component
magnitude. As an example, Figure 2(A) shows the vector
component plot of cluster 11 (all examples and the cluster
numbers are taken from the supplementary table) showing
two distinct regions in the plot. The graph layout, generated
using the software GraphViz,16 is given in Figure 2(B), which
confirms the information provided by the vector component
plot. It can be seen that the nodes, which have similar vector
component values in the plot form a subcluster, which is
clearly distinct for the other subcluster.

The identification of subclusters within a cluster in
PCUG is of importance because of two reasons. First, the
PCUG is a large graph and hence obtaining subcluster
information of the bigger clusters makes the analysis
easier as presented in this section. Second, even in the
smaller clusters, the partitioning of subclusters could give
biologically relevant information regarding the structure–
function correlations between the proteins belonging to
the subclusters as discussed in a later section. The graph
spectra of a few representative clusters are presented here
to elucidate the application of this method in the identifica-
tion of subclusters in a connected cluster.

Simple clusters

The simple clusters can be classified on the basis of their
degree density as those with high or low degree density.
Cluster 13 having 18 nodes is an example of a simple
cluster with low degree density (0.2) lacking subclusters.

Fig. 1. A: A plot of the size of the largest cluster obtained in PCUG as a function of Zmin values. B: Log–log plot of the normalized degree distribution
function P(k) versus the degree, k at Zmin � 11. The values observed are normalized in such a way that the probability of observing nodes with zero
connections is 1. The figure also shows a fitted line with equation, P(k) � k �1.8. C: A plot of the degree density as a function of Zmin. Degree density is
defined as the ratio of the average number of connections per node and the maximum number of connections possible per node in the graph. D: Log–log
plot of the degree density versus Zmin (see C). The fit to the curve (dashed line) shows power-law behavior and has an exponent of 2.2.
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The 2evc plot of cluster 13 is given in Figure 3(A) and the
graph layout is given in Figure 3(B). The graph layout also
gives additional information regarding the domains present
in the nodes. The graph layout in Figure 3(B), points out
that there are not many connections among the nodes in

this graph and they do not form distinct subclusters. Thus,
it can be deduced that this cluster lacks proper subclus-
ters. The 2evc plot reflects this behavior except for the
nodes 15, 16, 17, and 18 for which the vector component
values are the same. These nodes are not part of a
subcluster but still show up as having the same vector
component value. The rest of the nodes show a monotonous
increase in the vector component value reflecting the fact
that these nodes are “loosely” placed in the graph.

Cluster 24 having 12 nodes is a simple cluster with high
degree density (0.88). Usually the clusters with high
degree density form a near-clique with densely connected
subclusters. The 2evc plot of cluster 24, shown in Figure
4(A), clearly demonstrates that the cluster is a simple one
with almost all the nodes forming a plateau in the 2evc
plot. This clearly indicates that all the nodes form a
densely connected subcluster. This can be visualized from
the graph layout given in Figure 4(B).

Complex clusters

Complex clusters by definition are composed of two or
more subclusters with very few connections across the
subclusters. Hence, the degree density is generally low in
the complex clusters. Cluster 4, which is the largest cluster
obtained at Zmin value of 11, is a complex cluster having
subclusters. The 2evc plot of this cluster and the graph
layout of cluster 4 are given in Figure 5(A,B), respectively.
The 2evc plot indicates the presence of at least three
subclusters in this cluster, which can be identified from
the graph layout in Figure 5(B). Analysis of the individual
subclusters shows that the subcluster 3 is further made up
two subclusters as seen in Figure 5(B). Though this
segregation is not so clear in Figure 5(A), we do find a kink
in the plateau of subcluster 3, which corresponds to this
split into further subclusters. This further subclustering of
subcluster 3 is more clearly seen when this subcluster is
separately analyzed rather than as a part of the whole big
cluster. Thus, the 2evc plot is invaluable for the objective
identification of the subclusters in a large cluster, which
makes further structural and functional annotation sim-
pler.

In this section, we have presented an analysis of simple
and complex clusters in order to show that the subcluster
information can be obtained from the graph spectra. The
subcluster information is validated when the Zmin cutoff is
increased or decreased. At higher Zmin values, the subclus-
ters break off into individual clusters. At lower Zmin

values, many clusters merge with each other and form
subclusters. This can be seen from Figure 6, where two
clusters of five and 11 nodes each at Zmin� 11, are
connected into a single cluster at Zmin � 8 (with the total
number of nodes in the combined cluster being 24 due to
the presence of other nodes which are orphans at Zmin 11).
Further, the 2evc plot of this cluster at Zmin � 8 (Fig. 6),
gives two subclusters corresponding to the two clusters
obtained at Zmin � 11. This clearly elucidates that subclus-
tering at lower Zmin values can validate the clustering
information obtained at higher Zmin values since the
subclusters present in a single cluster at a lower Zmin

Fig. 2. A: A plot of the sorted vector component of second lowest
eigenvalue of each node in Cluster 11 obtained at Zmin 11. Such a plot is
denoted as 2evc plot in subsequent figures for other clusters. The cluster
11 has two distinct subclusters and this is can be identified by the two
distinct plateaus in this vector component plot. B: Graph layout of Cluster
11 showing the nodes (with PDB codes) of the cluster with node numbers
corresponding to the ones given in (A). The folds represented in this
cluster are indicated along with the node numbers of those proteins
belonging to the fold. Same convention is followed in subsequent graph
layout figures.
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Fig. 3. A: 2evc plot of Cluster 13 obtained at Zmin 11. The cluster has no distinct subclusters and is of low degree density. B: Graph layout of Cluster
13 showing the nodes (with PDB codes) of the cluster with node numbers corresponding to the ones given in (A). The protein structures of some of the
nodes are shown in the figure and these are indicated by arrow from the node to the protein structure. The domains are shown in different colors and
correspond to the different folds present in these proteins.

PROTEIN CHAIN STRUCTURAL SIMILARITY NETWORK 157



become separate clusters at a higher Zmin. Using algo-
rithms like DFS one can get the information about the
disjoint clusters present at a particular Zmin value but the
subclustering information cannot be directly obtained.
Repeated clustering of nodes using DFS at various Zmins

can give the subcluster information in the PCUG. How-
ever, the graph spectral method gives the subcluster at
any Zmin in a single step. Thus when analyzing large
graphs, where the information about the organization of
the nodes in a cluster is required, graph spectral analysis
scores over other methods.

In principle, the PCUG could be generated at a single
low Zmin cutoff, and from the graph spectra, one could
locate the subclusters, which at higher Zmin scores will
become individual clusters. However, clustering by the

graph spectral method in large graphs suffers from a
limitation due to the resolution of the vector component
values. Because the normalized value of the sum of the
vector components is 1, a larger number of nodes, in
general, result in very small values of the vector compo-
nents. In practice, this can be overcome by initially segre-
gating the distinct clusters in a large graph and then break
the large clusters obtained into smaller fragments (subclus-
ters). This paper elucidates one such method, which uses
DFS for getting distinct clusters and a graph spectral
algorithm for obtaining the subclusters. The smaller frag-
ments obtained using this method are very easy to analyze

Fig. 4. A: 2evc plot of Cluster 24 obtained at Zmin 11. The cluster has
two closely linked subclusters that are densely connected and this is
suggested by the fairly close regions of vector component values for the
nodes corresponding to those nodes. B: Graph layout of Cluster 24
showing the nodes (with PDB codes) of the cluster with node numbers
corresponding to the ones given in (A). Fig. 5. A: 2evc plot of Cluster 4 (largest cluster in PCUG at Zmin 11).

The cluster has three subclusters and these are indicated on the plot with
the numbers of the nodes belonging to that subcluster. B: Graph layout of
Cluster 4 showing the nodes (with PDB codes) of the cluster. The three
subclusters identified in this cluster are indicated in the figure. Due to the
large size of the cluster, individual nodes are not marked in the figure.
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and hence, this method has the potential to be very useful
in the analysis of large graphs. Another useful method is
the construction and analysis of edge-weighted PCUG
with the Zmin scores as the edge weights in the graph. This
would generate a single PCUG with the Zmin scores
embedded as edge-weights in the graph. However, we do
not discuss these edge-weighted PCUGs in this paper.

Analysis of the vector components of the highest
eigenvalue

Apart from the identification of clusters and subclusters,
graph spectra can also be used in the identification of
cluster centers. The cluster center is defined as the node,
which has maximum connection in the graph and is also
close to the geometric center of the graph from which the
distance to every other node is minimum.9 The cluster
center can be identified by the analysis of the vector
components of the highest eigenvalue (referred to as hevc
henceforth) and is found to have highest magnitude of
hevc.9 Hence, in the plot of hevc versus node number (the
hevc plot), the cluster center appears as a peak. For
example, the hevc and 2evc plots of Cluster 7 having 14
nodes is shown in Figure 7(A). The graph layout indicating
the node numbers and the PDB codes is given in Figure
7(B). This cluster has no subclusters as is evident from the
2evc plot and the graph layout. It can be seen from Figure
7(A) that Node 7 has the highest eigenvalue vector compo-
nent in the hevc plot. This node (1opoC) has maximum
connections in the cluster as can be seen from Figure 7(B)
and the sum of the distances from this node to any other
node in the cluster is the least. Thus, it is the cluster center
and has been identified in a single computation by graph
spectral analysis.

Structural and Functional Features of the Clusters
Seen in PCUG

The graph representation of biological networks and
their analysis has gained popularity in recent times due to

the fact that they give a view of the large-scale organiza-
tion of the biological components. Some of the networks
occurring in nature cannot be understood by studying
individual components alone, as they do not give insights
into the organization of networks. Examples include signal
transduction cascades, gene regulatory networks and pro-
tein interaction networks where a single component can-
not be understood without finding the “context” of its
function in the network. Another example is the analysis
of evolution of proteins, which exist in nature at present.
Much work has been done on the evolution and classifica-
tion of proteins at the domain level. It has been demon-
strated that the “Domain Universe” is largely “scale-
free.”6,7 The analysis of domains in itself is significant but
most proteins in the genomes studied are multidomain

Fig. 6. 2evc plot (solid line) of a cluster with 24 nodes at Zmin 8. This
cluster splits up into two clusters of sizes 11 (■) and 5 (Œ) respectively and
eight orphans (�) at Zmin 11.

Fig. 7. A: Plot of vector component of the highest and the second
lowest eigenvalue for each node of Cluster 7 obtained at Zmin 11. The
2evc plot indicates that there are no distinct subclusters present in this
cluster. The hevc plot showing the vector component of highest eigen-
value for each node is also given in the figure. The hevc plot suggests that
node 7, which has the highest magnitude in this plot, is the cluster center.
B: Graph layout of Cluster 7 showing the nodes (with PDB codes) of the
cluster with node numbers corresponding to that given in Figure 6(A).
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proteins and therefore it is important that protein evolu-
tion be studied both at the domain level and at the chain
level. Domain recombination and duplication are the pro-
cesses that drive the formation of new proteins with novel
functions. The recombination can either be random or
otherwise. The random recombination of domains might
lead to counter-productive domain combinations, and hence
these combinations will be eliminated by natural selection.
Thus, the existing combinations are likely to have arisen
due to strong selection processes. However, there are also
arguments in favor of random recombination of domains.
These aspects related to domain combination events are
discussed in the review by Koonin and coworkers.20 Since
the mechanisms that govern domain combinations are not
clearly understood, studies related to domain fusion is an
interesting area of research, which can enhance our under-
standing of the structure-function relationships in pro-
teins.

In the analyses presented in this paper, we have found
that the connections between the chains forming clusters
in PCUG can be due to (1) the presence of domains with the
same fold or (2) the presence of multidomain chains
consisting of two different folds that bring together differ-
ent folds into the same cluster or (3) structural similarity
between two different folds. A few interesting cases where
the nodes have formed clusters or subclusters with biologi-
cally interesting properties are explained below. Our pri-
mary aim here is to assess the efficiency of the graph
spectral method as applied to the PCUG.

Structural features of protein chains clustered in
PCUG

DALI Z score is known to distinguish two different folds
even at a Zmin of 2.21 Thus, it is interesting to find two
different folds being present in the same cluster at a high
Zmin cutoff of 11. We analyzed such cases further and
Cluster 13 [Fig. 3(A,B)] is a good example of a cluster
where we find two different folds present in the same
cluster at Zmin � 11. In this cluster, three different SCOP
folds are present namely SIS domain, PRTase domain, and
Ntn Hydrolase domain. Node no 11 (1ecgB) has both Ntn
hydrolase domain and PRTase domains. Nodes 1–10 have
only PRTase domains. Nodes 11–14 have Ntn hydrolase
domain. Node 14 has both Ntn hydrolase domain and a SIS
domain and nodes 15–18 have SIS domains. It is clear from
this example that due to the presence of two multidomain
chains namely 1ecgB (PRTase and Ntn hydrolase) and
1jxaA (Ntn hydrolase and SIS domain), three different
SCOP folds have come together in this cluster. It can be
seen from Figure 3(B) that the SIS domain nodes 15–18
are partitioned into different subclusters where nodes 15
and 16 form one subcluster and nodes 17 and 18 form
another subcluster. They do not have any direct connec-
tions with each other and are connected only through Node
14. On further analysis, it was found that nodes 17 and 18
belong to a different family (Phosphoglucose isomerase
family) than nodes 15 and 16 (mono SIS family) though
they all belong to same SIS domain fold. It is interesting

that the chains belonging to different families of the same
fold get partitioned in the clusters seen in PCUG.

The segregation of chains within a cluster according to
SCOP family is also seen in Cluster 14, which has 21
nodes. The 2evc plot and the graph layout of this cluster
are shown in Figure 8(A,B), respectively. In this cluster,
only PH domains and DBL homology domains are found.
Nodes 1, 2, and 5 have both PH domain and DBL homology
domain. Nodes 3 and 4 have only DBL homology domain.
Nodes 6–21 have only PH domains. The chains with PH
domains and DBL homology domains have come together
due the presence of multidomain chains containing both
the folds. Figure 8(A) shows the partitioning of the subclus-
ters according to presence of PH and DBL homology
domains. Further analysis of the PH domain subcluster
shows the segregation of all the PH domain folds according
to their families as can be seen from Figure 8(B). Nodes
6–8 belong to Phosphotyrosine binding family, Nodes 10
and 11 belong to Acyl Coa binding family, node 18 belongs
to Ran-binding family, nodes 19–21 belong to the VASP/
Enabled homology family and the other PH domain contain-
ing chains belong to the Pleckstrin Homology family. This
segregation is due to the fact that DALI Z scores are able to
distinguish the structural changes occurring across SCOP
families belonging to the same fold. The present analysis
clearly brings out such interesting features observed in the
chain universe.

Subcluster 1 of the biggest cluster (cluster number 4)
has 32 nodes comprising of chains with folds belonging to
all � class of SCOP. The folds represented the most are
immunoglobulin-like � sandwich, �-trefoil and concanava-
lin A fold. It is interesting to note that Cluster 1 (Supple-
mentary Table) also has chains with immunoglobulin-like
� sandwich fold, but the proteins seen in the nodes of
Cluster 1 are part of the immune system or signal transduc-
tion pathways and are functionally different from the ones
seen in this cluster. This clearly suggests a structural
segregation of functionally different chains, which have
the same SCOP fold. This feature appears because the
DALI Z scores are sensitive to the structural differences in
such proteins and is reflected in this graph spectral
analysis.

Different folds occurring in the same cluster due to
multidomain chains is expected in a chain universe graph.
However, what is not expected is the presence of two
different folds in a cluster although there is no multido-
main chain containing the two folds. Cluster 11 [Fig.
2(A,B)] is an example showing such connections. This
cluster consists of two subclusters belonging to Periplas-
mic binding domain and NADP-Rossman fold. The com-
mon link between the two subclusters in node 14 (1dxy),
which has NADP-Rossman fold and Flavodoxin fold. This
node connects to the Periplasmic-binding subcluster
through nodes 12 and 13 (8abp and 1gca), both having the
Periplasmic binding fold. All the three domains (NADP-
binding Rossman fold, Flavodoxin fold and Periplasmic
binding fold) belong to SCOP �/� class and have been
connected in the cluster due to structural similarities
arising due to similar arrangement of the secondary
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Fig. 8. A: 2evc plot of Cluster 14 obtained at Zmin 11. The cluster has three distinct subclusters, which correspond to node numbers 1–5 in subcluster
1, 6–17 in subcluster 2 and 19–21 in subcluster 3. B: Graph layout of Cluster 14 showing the nodes (with PDB codes) of the cluster with node numbers
corresponding to those given in (A). The protein structures of some of the nodes are shown in the figure and these are indicated by arrow from the node to
the protein structure. The domains are colored in different shades and correspond to the different folds present in these proteins. For the nodes having
PH domain, the figure also gives the information about the family they belong to. The segregation of nodes according to the family is clearly
demonstrated by this figure.
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structures although their function and the evolutionary
history might be different.

Structure–Function Correlation in PCUG

In addition to the structural correlation seen in PCUG,
we observe that the function within a cluster is broadly
conserved in many cases even if two or more than two
domains are present in the cluster. It seems to suggest
that domains combinations may not occur randomly. The
clusters with multidomain chains bringing together two
different folds also show some conservation of function.
The most convincing example is the biggest cluster (cluster
4) in which there are 326 nodes and more than 15 different
SCOP folds, but predominantly the cluster has carbohy-
drate metabolism related gene products. The functions
present in the cluster can be systematically studied using
the GO database.22 GO database provides a controlled
vocabulary for describing the functions of gene products.
The GO database gives three different annotation schemes
corresponding to the biochemical function, the biological
process in which the protein is involved and the localiza-
tion of the gene product. The advantages of using GO are
that it is a hierarchical language, thus the functions of
genes can be studied at many levels of specificity with
nodes at a higher levels of specificity being children of the
lower levels. The frequency plot of the GO annotation
terms (GO biological process at level 4) present in the
biggest cluster is given in Figure 9, from which it is clear
that there is a predominant function present in this cluster
(metabolism of carbohydrates). Another example of func-
tion being conserved despite the presence of two or more
fold in a cluster is that of cluster 13, where most of the
functions are hexose or ribose transferring enzymes, even
though there are three different folds present as men-
tioned earlier (GO plot not shown).

Such conservation of function despite the fact that there
are so many different folds in the cluster suggests that
structural similarity between chains is not a random event
and that the domain combinations are selected based on
the functional requirements of the protein. However, it
must be pointed out that clusters with diverse fold related
to similar function as seen above, is not true in all cases.
There are cases where the folds and the functions seen are
not conserved. For example, cluster 14 consisting of PH
domain and DBL homology domains seem to perform
different functions. The plot of frequency of GO annota-
tions seen in a cluster (see example in Fig. 9), which gives
information regarding the distribution of functions within
a cluster, reveals that functional fingerprints exist even in
the case of Protein Chain Universe. Since the structural
data of multidomain proteins is limited, it is difficult at
present to understand fully the domain combination events
through structure–function correlation of multidomain
proteins.

CONCLUSION

Protein chain universe graphs (PCUG) have been con-
structed using the structural similarity scores. The net-
work properties of the graphs are analyzed as a function of

the similarity scores. Further, the graph spectral algo-
rithm is used to obtain detailed subcluster information
from the completely connected graph. The nodes in a few
clusters and subclusters are analyzed for structural and
functional correlations. The study highlights the following
points.

The network behavior of PCUG, in terms of degree
distribution (number of nodes with k links) is dependent
on the cutoff of the structural score used in PCUG construc-
tion. PCUG shows a scale-free behavior above a DALI Z
score of 7 and the best fit with an exponent of 1.8 is
obtained at a Zmin score 11. Interestingly, the degree
density (edge to node ratio normalized with respect to
clique) as a function of Zmin score shows a nice power law
behavior with an exponent of 2.2.

A single numeric computation by graph spectral
method yields the subcluster information in a graph.
The vector components of the second lowest eigenvalue
can yield information about the nature of clusters in a
graph, such as the details of the number of subclusters
and the density of clusters in the graph. The cluster
center can be obtained from the highest vector compo-
nent of the largest eigenvalue. These features can prove
to be extremely useful in the analysis and annotation of
large networks.

Examples are presented where the proteins are clus-
tered together due to structural similarity or due to
common domains in multidomain protein chains. In some
cases, the proteins in a given cluster are involved in
related functions and in some others there is no apparent
functional correlation.

Fig. 9. Frequency plot of GO annotation (biological process) at level 4
present in biggest cluster (Cluster 4) at Zmin 11. The annotation number is
obtained from the pdb2go mapping obtained from PDB site. For each
node there can be many GO terms and each GO term might be the child of
many parents. Thus, the cumulative frequency of the annotation terms is
higher than the number of proteins present in the cluster. The predomi-
nance of a few annotations at such a high specificity level demonstrates
the fact that the cluster has proteins performing very similar tasks in the
cell since they are related to very similar biological process, which is
metabolism of carbohydrates.
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SUPPLEMENTARY MATERIAL

One supplementary table has been provided, which
contains all the structural and functional details of the
proteins forming clusters in the PCUG at Zmin 11.
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